Soft robotics represents a transformative approach to automation, focusing on the development of robots constructed from flexible, compliant materials that mimic biological systems. Being different from traditional rigid robots, soft robots are engineered to adapt and operate efficiently in complex, unstructured environments, making them highly appropriate for applications that require delicate manipulation, safe human–robot interaction, and mobility on unstable terrain. The key principles, materials, and fabrication techniques of soft robotics are explored in this study, highlighting their versatility in industries such as healthcare, agriculture, and search-and-rescue operations. The essence of soft robotic systems lies in their ability to deform and respond to environmental stimuli. The system enables new paradigms in automation for tasks that demand flexibility, such as handling fragile objects, navigating narrow spaces, or interacting with humans. Emerging materials, such as elastomers, hydrogels, and shape-memory alloys, are driving innovations in actuation and sensing mechanisms, expanding the capabilities of soft robots in applications. We also examine the challenges associated with the control and energy efficiency of soft robots, as well as opportunities for integrating artificial intelligence and advanced sensing to enhance autonomous decision-making. Through case studies and experimental data, the potential of soft robotics is reviewed to revolutionize sectors requiring adaptive automation, ultimately contributing to safer, more efficient, and sustainable technological advancements than present robots.
Loading....